ブログ > 10ページ - いわき経営コンサルタント事務所

 090-3126-7985
お問い合わせ

ブログ

2024 / 07 / 01  09:38

飛行機の世界から学ぶ経営いろは考:第21講;『抗力=抵抗(Drag)』

飛行機の世界から学ぶ経営いろは考:第21講;『抗力=抵抗(Drag)』

 

第21講;『抗力=抵抗(Drag)』

 

お断りばかりのプロローグで申し訳ありません!

 今回も、専門用語(特に英語)を多用しますので・・・混乱するかも知れません!

 悪しからず、ガマンして読むか・・・最後の方へ読み飛ばして下さい!

 以前、飛んでいる飛行機には4つの力 (Force)が発生していることをお話しました。

 上向きのLift(揚力)、前向きのThrust(推力)、後ろ向きの今回のテーマであるDrag(抗力)、そして地面に向うWeight(重さ:重力)です。

 

 「Drag(抗力)」は、飛行している反対に行く力です。

 動くモノには、前進するのを阻止しようと多くの「Drag(抗力)」が発生しています。

 

 飛行機には、大きく分けて2種類の「Drag(抗力)」があります。

 「Parasite Drag(寄生抗力と私は訳します)」と「Induced Drag(誘導抗力)」です。

 

まず「Parasite Drag(寄生抗力)」は、一般的に「空気抵抗」と呼ばれているモノです。

 「Induced Drag(誘導抗力)」は、翼が揚力を発生させる時に生まれる副産物です。

これらの「Drag(抗力)」は、自動車にも船舶にも発生するものです。

 昨今の自家用車や新幹線、特急列車などが流線型である理由も「Drag(抗力)」を減らすために考えられ、デザイン的にも美しいものは流れがスムーズですよね!?

 

 「Parasite Drag(寄生抗力)」には、3種類の抗力があります。

1)Form Drag(形状抗力):気流(流れている空気)に物体を当てますと発生するモノ

 です! 後方に押そうとする力になります。

 例としては、飛行機に取り付けられたアンテナや支柱、ギア(車輪)、翼など、

 何でもが気流の中にあるモノですから、気流にとっては邪魔ですよね!?

 この抗力は取り付けられたモノの面積や形に大きく依存します。

 翼の様な滑らかな形状では、抗力少なくなりますが、四角い形の物体では多くなり

 ます。

 

2)Interference Drag(干渉抗力):飛行機にはありとあらゆる所に気流があります。

 2種類以上の気流が合流する所に発生するのがInterference Drag(干渉抗力)です。 

 気流の合流点では、だいたい渦の様な乱気流が発生し、それが飛行機の推進にとって

 大きな抗力になります。

 飛行機でInterference Drag(干渉抗力)が一番大きくなる部分は、主翼と胴体の付け根で す。

 

3)Skin Friction Drag(表面摩擦抗力):気流が飛行機の表面を接触して流れてゆく時に

 発生する摩擦を言います。

 ツルツルの表面では少なくなりますが、飛行機に近づき触りますと、リベットや塗装

 ムラ、継ぎ接ぎなどのデコボコがあり、それらが気流の通りを邪魔し摩擦が空気抵抗

 になります。

 

 「Parasite Drag(寄生抗力)」は、一般的な空気抵抗と思って下さい。

 走っている自動車や自転車でも同じ様に発生するものです。

 川の中の岩や橋桁、水藻、立木なども、水流からすると「Parasite Drag(寄生抗力)」で すね!?

 

これ実は・・・、特徴として、「Parasite Drag(寄生抗力)」は速度の2乗に比例するのです!

ですから速度が3倍になれば、なんと・・・その2乗の9倍となります。

 速度が増えると急激に増えことを知っておくといいですね!?

 

 最近、見かけるのも少なくなりましたが、ワゴン車をゴテゴテにデザインした車があります。下手すると高速道路では、スピードが出過ぎたり、突風・暴風にでも出くわしたら、せっかく何十万円もお金を掛けて取り付け、塗装などをしたのに、そのデコレーションが吹っ飛んでしまうかも知れません(^^;

 

「Parasite Drag(寄生抗力)」は、もちろん速度が落ちれば格段に小さくなります。

 

 次に「Induced Drag(誘導抗力)」ですが、「揚力(Lift)」が発生する時に副産物として発生する抗力のことです。

 

 揚力が発生する時には、翼付近の気流が下に押し流されます。

その影響で、揚力が後方に傾き、その傾きが抗力になるのですねぇ~(^^;

難しいでしょから・・・適当に想像して下さい!ります。上に引っ張る揚力が後ろ向きに揚力というのは、飛行機を上に吊り上げるだけでなく、揚力自体が飛行機を後退させようとします。

 

 変な例ですが・・・、皆さんの髪の毛を真上に引っ張ってください!

 髪の毛のない人、・・・引っ張ると心配な人はやらないで下さい(^^;

 

頭は上に行きますよね!?

でも、その髪の毛を斜め後ろに引っ張って下さい。

 頭は確実に、上にも上がりますが、その時には頭が後方にも行いきますよね!?

これが「Induced Drag(誘導抗力)」です(^^)

 

ですから「Induced Drag(誘導抗力)」は、揚力が強い時に増えるのですね!

 低速で飛行している時は、速度が少ないので揚力が少なくなります。

それを補うために機首を上げて、Angle of Attack (迎え角度)大きくします。

そうしますと揚力は後ろに引っ張られ、「Induced Drag(誘導抗力)」が大きくなります。

 

Parasite Drag(空気抵抗)は速度が速くなると、強烈に増えていきます。(速度の2乗に比例します。)

でも、「Induced Drag(誘導抗力)」は速度が速くなると逆に減って行きます。

 速度が速いと「Lift(揚力)」が大きくなるので、機首を上向きにする必要が最小限になります。

 

でも逆に速度が落ちますと「Lift(揚力)」が減るので、それを補う為に迎え角を増やしますので「Lift(揚力)」の角度が後ろに後退して「Induced Drag(誘導抗力)」が増えます。

 

 飛行機の「抗力(Drag)」と「速度(Speed)の関係は、

 全体の「抗力(Drag)」の合計は、「速度(Speed)」が早すぎても、遅すぎても大きくなります!

 実は難しいのですが、「最適滑空速度(Best Glide Speed)」と呼ばれる速度で合計の「抗力(Drag)」が一番少なくなります。

 

 前回勉強した「『Load Factor(荷重比率;倍数)」を「L/D Maxi」とも言うのですが、「Lift(揚力):「Drag(抗力)」の比率が一番大きい時、Total Drag(総合抗力)が最低になります。

この速度で飛行しますと、空気抵抗が一番少ないので、エンジンが停止した時には、このスピードにすれば最大の距離を滑空することが可能になります。

 緊急事態で、飛行中にエンジン停止した時、「エマージンシーのABC」を、免許取得までに何度も訓練します。

 

ちなみに、「エマージンシーのABC」とは、

1)A:Air Speedを飛行機の「最適滑空速度(Best Glide Speed)」にすること

2)B:緊急着陸するためのBest field 即座に見つけること

3)Check List に添って、粗漏なく落ち着いてエンジンかけ直しにトライし、

もしエンジン再開不可能なら、Force Landing(正式にはemergency a forced landing);

 不時着する

 ことです。

 

 

さて、ビジネス・リーダーへの教訓は、

 「空気抵抗」は、速度が速くなると、強烈に増えていく!(速度の2乗に比例)

 「誘導抗力」は、速度が速くなると逆に減って行く!

 速度が速いと「揚力(浮き上がる力)」が大きくなる!

 

 企業が成長発展して行く段階でまったく同様の「抵抗」が増えるものと減るものがあるのを知っておくと、思い切った成長発展は怖くないのですね!?

 

 中小零細企業がなぜ・・・大きくならないのか? の最大の原因はトップ・マネジメント・リーダーの「恐怖感」なのです!

それは大きくなるなるに従って、いままで親しくつき合ってきた人たちからの「ねたみ」「やっかみ」「辛み」「恨み」「ひがみ」が「空気抵抗」と同様に増えるのです!

また、子飼いの従業員からも「今までの方がいい!」「こんなこと~!」なんていう、サボタージュも含めた抵抗(レジスタンス)が必ず燻ります。

 「ドライ」「クール」でない「ウェット」なビジネス・リーダーは、従業員も組織機構の改革、すなわち「リ・ストラクチャリング」するのに恐れを持ちます。

 

ここで成長速度(スピード)を鈍化させるとたちまち「揚力(浮力)」が小さくなり、高度が落ち始めるのです。下手すると・・・「失速」するのです!

 

こう言う時期こそ、もっとスピードアップすべきなのです。

そう! アクセルを思いっきり踏み込むのです!

その踏み込みを「勇気」と言いましょう!

 

 巡行高度に達すると・・・安定した水平飛行に入ることができます!

そうすると景色を落ち着いて、ゆっくり見下ろすことができます。

その時、新たなアイデア、信念までもが生まれてきます。

 

 飛行機は、スピードを出すとき「G」が掛かります。

その「G」が快感になるようなビジネス行動を起こすことを習慣化しましょう(^o^)/

  

ありがとうございました。

 

いわき経営コンサルタント事務所の詳細は、

https://imcfujimoto.net/

 

いわき市において、いわき夢実現塾を開催しております。

興味のある方は塾生になるにはハードルが高いですが、こちらをご覧下さい!

https://imcfujimoto.net/free/school

 

2024 / 07 / 01  08:30

飛行機の世界から学ぶ経営いろは考:第14講;『傾向Tendencyその1』:P-Factor(プロペラ・ファクター)

飛行機の世界から学ぶ経営いろは考:第14講;『傾向Tendencyその1』:P-Factor(プロペラ・ファクター)

第14講;『傾向Tendencyその1』:P-Factor(プロペラ・ファクター)

 

先週は、とある企業の経営診断報告書の作成で悪戦苦闘しておりました。

病院の健康診断と診断書は簡単ですよね!?

コンサルタントにとっての経営診断とその後に必要不可欠な経営診断報告・勧告・指導書作成というのは大変なのです(^^;

ハッキリ言って・・・割に合わない(^^;

そんな愚痴をこぼしながら、パイロット・コンサルの経営いろは考に着手(^^;

 

 

離陸中や上昇中に飛行機が勝手に左へ旋回をしようとする傾向のことを「Left Turning Tendency」と言います。

 

私たちの生活場面やビジネス場面でも『傾向』ってあるでしょう?

こちらは飛行機の航空力学でのお話になりますので・・・余りにも難しいと感じたら、飛ばし読みか? 最後の方までトラップ(飛ぶ)されてもOKです(^^)

 

 

左へ旋回をしようとする傾向(Left Turning Tendency)には、4つの理由があります。

これらの4つの理由はすべて、回転するプロペラによって発生します。

エンジン高出力の時(プロペラが最高回転状態に近い)に強く発生します。

特に飛行機が低速状態では翼の勢いが少ないので、余計顕著に影響が出ます。

ですから・・・、飛行機というのは低速状態が危険なのです。

 

実は、離陸というのは飛行機が低速状態から浮き上がる状態です。

また巡航飛行から、上昇しようとしますと飛行機の揚力を作るため機首を上げます。

その時、飛行機はスピードが落ちてきます。力学的には、スピードのエネルギーが揚力に変換されます。

どちらも・・・、エンジンは全開状態です。

 

まず「プロペラ・ファクター(P-Factor)」と呼ばれる力が発生します。

本当は実物を写真でお見せしながら説明しなければ上手くご理解できないかも知れません(^^;

その理屈を米国の飛行機専門分野のYou-tubeで動画説明されています。もちろん英語ですが、理屈が判るのでご覧下さい!

 1) https://www.youtube.com/watch?v=TYn1GrvtPXU

 2) https://www.youtube.com/watch?v=Zf7-nSMLnMo

 

飛行機の機首が通常の水平状態よりも上向きになった場合、プロペラに当たる風の向きが変わります。 

そのため、左右のプロペラに出来る相対風(Relative Wind)の向きがちょっと変わります。

角度の差は小さいのですが高速で回転しているため、その作用が大きく出ます。

右側の下がるプロペラ(Ascending Propeller)には風が下から来る様になるので、推力が増えます。しかし、左側のプロペラは上の方から風が来る様になるので、まぁ~上から押されると想像していただくと推力が減ります。 

右側が強く、左側が弱くなるので機首が左に曲がろうとします。

これを「P-Factor」と言います。

この「P-Factor」が生まれると、右側のプロペラがより多くの推力(前に進もうとする)を発生させますので飛行機は左に行こうとします。

 

エンジンの出力が高い(高出力)時は、全体の推力発生も大きくなります。

自動車ではこんなことは起こりません。ですから、アクセルと同様の飛行機のエンジン・パワーの操作だけで飛行機はどこかに動こうとするのです。

特に機首の上向く角度が大きい時ほど、この現象が大きくなります。

飛行機の専門用語では、Pitchが高くなると強くなるといいます。

そしてまた機首が高いと(上向く角度)、自然と飛行機自体が低速にもなるので、翼や操縦桿、尾翼の作用も小さくなって「P-Factor」がより大きく感じられます。

 

ここからは、飛行機の勉強をされている方々向けの書き方になりますが、

「High Angle of Attack」=「機首が高い」=「左右の差が大きくなる」=「 P-Factorが強い」

 

別の書き方をしますと、

「High Pitch」 + 「Slow Airspeed」 +「 High Power」 で「P-Factor」が強くなる。   

飛行機は離陸上昇中に機首を上げすぎますと・・・左に強く曲げられ、放っておくと左旋回しながら傾きはじめ、失速することがあります。

 

飛行機を操縦しますと、この「P-Factor」は簡単に感じます。

ちょっと機首を上に上げてやると直ぐに感じます。飛行機は直ぐに左に行こうとします。

そのため、機首上げをした時は右のペダルを踏むという訓練をします。

 

実は、余裕ができてきますと上昇のために機首上げしますとこの「P-Factor」の作用によって計器(Turn Coordinator:旋回釣合計、旋回傾斜計)にあるボールが右側に流れのを見ることができます。

それを修正するために、米国の教官は優しく”Right Rudder"と言ってくれます。

日本のクソッタレ教官は、偉そうに「ホラッ!右ラダーだよ!」と怒鳴ります。

 

また米国の教官は、

「操縦のコツですね・・・前をよく見て、機首の上げ下げが有っても飛行機の向きが変わらない様にすることなんです。一番良い方法はは、落ち着いて風景を見ながら、風景が左右に移動しなければ計器を見なくてもボールは真っ直ぐとなってます。前を見ても分らない時は、貴方のお尻に掛かる力が左右同じであればピッタリなんですよ(^^)」

と優しいのです。

日本のクソッタレ教官だと、

「ホラァッ! 曲がってっだろう! 水平線が動いてんだろう! ケツで感じろ!」

でも・・・、晴天下の上昇中には水平線・地平線って見えません(^^;

 

米国の教官でしたら、もう一つのコツどころを教えてくれます。

フロントガラスの向こうではなく、左右の窓から見える水平線、地平線と飛行機の主翼との位置関係で風景が左に動いていないか判る方法をを教えてくれます。

 

だんだん計器を見るより、風景を見る癖を付ける方がはるか早く、「P-Factor」や他の「Left Turning Tendecy」に対応できるようになります。

 

さて今回のビジネス・リーダーへの、飛行機の理論からの教訓です!

 

飛行機は上昇中に左に回ろうとする傾向があるのです。

4つあるその一つが「P-Factor」なのです。

企業・組織の上昇中というのは、成長・発展中、売上げ上昇中のことですね!?

 

企業は特に、売上高が上がってきますと何が発生するかといいますと、多くの組織でのやるべき事の量(作業量)が増えます。

今までの人員で、その作業量をこなそうとしますから、間違いなく負荷が掛かるわけです。

そのことを知らないでぬか喜びするビジネス・リーダーも意外と多いのです!

 

どうなるか・・・?

作業を担当する人たちは、自身の作業に意識集中、手一杯状態となります。

上昇氣分になる人と(右プロペラ)と下降氣分になる人(左プロペラ)が必ずいます!

 

そうしますと・・・コミュニケーションを取ることがおろそかになるのです。

本来なら、まっすぐに全社員の意識ベクトルが向かわなければならないのに、どこかで、誰かのベクトルがズレるのです。

「忙しい」=「心をなくす」と・・・、全体のベクトルが変な方向に向かうのです。

それを直ちに感じ、修正をする役目を担っているのがビジネス・リーダーなのです。

 

国家は国民主権なとど難しいことを言いますが、経営はビジネス・リーダー主権であるべきです!

これは飛行機でいいますと乗客主権ではなく、全責任を負うパイロットが全権限を持つことと同じことなのです!

実は、パイロットでも機長のことをPIC(PILOT IN COMMAND:ピーアイシー)と呼びます。

 

そうなのです!

ビジネス・リーダーは、コマンドを矢継ぎ早に発する人でなければなりません。

自分自身が、作業に没頭して汗水垂らすことが立派なことではないのです!

冷静に状況を把握しながら、都度々、やり方の変更、新しいやり方の追加をするのです。

これを「命令の変更・追加」と組織論では言います。

言い方は、敬語を使っても、クソッタレ教官のように言ってもいいのです。

とにかく、部下はあなた・・・ビジネス・リーダーのコマンドを待っているのです。

 

「氣を使うな! 金使え!」って、良く皆さんに言いますよね!

企業・組織は、従業員に気を遣う慈善事業をやっているのではありません!

営利の優先をして、それを実践し、社会のお役に立って、従業員の・組織員の幸せを追求するのです。

社員・従業員・組織員のご機嫌を取って、言いなりになり、あらぬ方向に組織が向かうなんて邪道なのです!

 

しっかりとラダーを踏んで(舵取り)をしましょう(^^)

 

次回は『傾向Tendencyその2』:Torque(トルク効果)から学んでみます。

 

 

ありがとうございました。

 

いわき経営コンサルタント事務所の詳細は、

https://imcfujimoto.net/

 

いわき市において、いわき夢実現塾を開催しております。

興味のある方は塾生になるにはハードルが高いですが、こちらをご覧下さい!

https://imcfujimoto.net/free/school

 

2024 / 06 / 24  08:30

飛行機の世界から学ぶ経営いろは考:第13講;『重心の位置と安定性』

飛行機の世界から学ぶ経営いろは考:第12講;『重心の位置と安定性』

『重心の位置と安定性』

 

今回は、チト難しいかも知れませんが・・・(^^;

 

飛行機の安定性(Stability)という言葉はパイロットにとって重要なキーワードなんです(^o^)

 

「操縦のしやすさ」とか、「操縦の楽しさ加減」、「操縦のお気楽さ(^o^)」のことを言います。安定している(Stable)飛行機と言うのは操縦が楽なのです!

パイロットはあまり何もしなくても、勝手に真っ直ぐ飛んでくれる飛行機の状態のことをいいます。

 

実は安定している飛行機というのが傾きますと、勝手に元の姿勢に戻ろうとするのです!

そんなに苦労しなくても良い飛行機のことなのです。

英語では「Less Effort」と言います。

 

逆に、不安的な(Unstable)飛行機は、飛行機の姿勢がコロコロと変わりやすく、操縦するのに大変な飛行機のことなのです。

ちょっと傾いてしまいますと、元に戻るのに時間が掛かったり、逆に傾きがひどくなってしまう飛行機を言います。

でも不安定な飛行機は、敏感なので運動性には優れています。

乗り心地は最悪、また操縦も難しくなるので安全ではありません!

相当の技量があるパイロットしか操れません(^^;

まるでロディオで荒馬に乗るのと同じだとお考え下さい。

 

ですから基本的に、お客様を乗せる旅客機は安定性が高く造られています。

戦闘機などは、敏感な動きが必要なので不安定な傾向があります。

ですから戦闘機のパイロットの技量は並ではないと考えても言いのです。

それにまた、戦闘機は航空母艦や短い滑走路からの着艦、離着陸もするのですから・・・(^o^)

もっと凄いこともご理解下さい!

滑走路が爆弾で穴ポコが空いていたら、それを避けるように着陸する訓練もやっているのです。

 

私の乗っているセスナ・スカイホーク172Pは、基本的に初心者には最高に優しく安定しております。

なんとまぁ~1956年(私が小学校に上がる直前)に引き渡しが始まりました。

世に出てから、もう60年も飛び続けている世界で最も売られている名機なのです(^o^)

 

飛行機には3本の軸があります。それぞれの軸に対して3種類の安定性があります。

呼び方は色々とあるそうですが、ピッチの安定性(Pitch Stablity)、ロールの安定性(Roll Stablity)、ヨーの安定性(Yaw Stablity)です。 

ロールの安定性(Roll Stablity)、ヨーの安定性(Yaw Stablity)は、飛行機の設計や整備の段階で決まってしまいます。

ロールとは主翼の左右対称に動くことをいいます。

実は、燃料というのは主翼の中にあります。

基本的に左右同量の燃料を入れますが、一つの燃料タンクを指定して使い続けることもできます。

そんなことをしますと左右の重さが不均衡となり安定性は悪くなります。

パイロットは、飛行中に燃料の無くなり具合を時々チェックします。

ガス欠を起こしたらエンジンが止まって、飛行機は落っこちます。

車や船は、止まるかプカプカ浮いておくことができます。

燃料チェックの時、左右の主翼にある燃料の量が一定かもチェックします。

普通は左右変わりませんが、まれに訓練の仕方で左右の量が違ったりします。

その時には、多い方の燃料のあるところから供給するよう燃料バルブを変えます。

ヨーというのは、飛行機の前後中心の一点に上から下に串を刺して、右に左にクルクル水平に回るイメージを持って下さい。

実は垂直尾翼がその役割をします。

飛行機では両足にペダル(ラダーといいます)があり、そのラダーで飛行機の向きを変えます。日本語で「方向蛇」と呼びます。

これも設計、整備段階でほぼ安定した状態になります。

 

パイ ロットの判断、操縦の仕方で最も影響を受けるのがピッチの安定性なのです。

ピッチというのは、先ほどロディオの馬の話をしましたが、飛行機が上下に波打つ状態だとお考え下さい!

 

飛行機は機首の上げ下げの安定性(Pitch Stablity)を作り出す為に、飛行機全体の重心位置が揚力(Lift)の中心位置から前の方に来る様に設計されています。

重心のことをCenter of Gravity(CG)と英語で言います。

揚力の中心をCenter of Lift(CL)と言います。 

重量も揚力も一箇所で発生させている訳では無いのですが、構造計算上それらの中心点を求めます。

その中心点に全ての重量や揚力が発生していると考えても間違いではありません。

 

普通の飛行機では、CGがCLの前に来ています。

また飛行機はCGを中心として運動しています。

「揚力」はCGの後ろに来ているので、CGの後ろに来ている主翼は、上に上ろうとする揚力を作り出しています。

主翼は上りながらCGを中心に回転しようとします。

その結果、飛行機は常に機首の方が重い状態(Nose Heavy)、機首が下向く傾向(Nose Down)の状態になっております。

この機首が下がろうとする状態を抑える為に、実は後ろにある小さな水平翼;水平尾翼(Horizonatl Stabilizer)が下に行く力を作り出すようにして、この回転する状態(Nose Down)を抑えます。

これがきちんとできれば飛行機の水平飛行ができるようになります。

この力のことをTail Down Forceと言います。

水平尾翼は主翼と平行に取り付けられている場合と主翼よりも下向きに取り付けられている場合があります。

主翼の後ろでは、空気は下向きに流されます。

飛行機が水平状態でも尾翼が空気によって下に押される傾向(Tail Down Force) があります。

 

この「重心と揚力の位置関係」と「水平尾翼のTail Down Force」で飛行機の安定性(Pitch Stability)を作り出しています。

まさに「テコの原理」でして、小さな力で遠い所にある水平尾翼は少しの力でも大きな影響力があるのです!

 

もし水平飛行している飛行機が何らかの理由(風だとか、操縦桿を旋回のために回そうとして無意識に前に押し出してしまう初心者の緊張ミス)で機首が下がりますと、スキーと同じで飛行機の速度が上ります。

そうなりますと主翼と水平尾翼にも、より多くの風が流れてしまいます。

主翼も水平尾翼もどちらも、より大きな力を作り出します。

主翼を通過した空気は下向きに流れ(Downwash)ますので、水平尾翼ではその影響を受けます。

また水平尾翼は遠い所にあるため、水平尾翼を下に押し下げようとする力(Tail Down Force)が強く働きます。

そうしますと、飛行機のお尻(Tail)が下がり、テコの原理で機首(Nose) が上って、元の位置に戻ろうとします。

また、逆に機首が上り(Pitchが上がると言います)ますと・・・飛行機は減速しちゃうのです!

そうなりますと・・・今度は機首が下がり元に戻ろうとするのですねぇ~(^^;

こうして、なんとか上下の動きを安定させようと飛行機は自然にします。

これを機首の上げ下げの安定性(Pitch Stablity)と言います。

 

ところが、先ほど書きました水平飛行している飛行機が何らかの理由(風だとか、操縦桿を旋回のために回そうとして無意識に前に押し出してしまう初心者の緊張ミス)で機首が下がったりしますと、初期の訓練生は慌てて、無理にその状態を直そうとします。

本当は操縦桿から力を抜けばいいのですが・・・緊張と機首が下がるとジェットコースターに乗っている氣分になり、逆に力が入り、余計な操作をしてしまいます。

 

あのクソッタレ教官(アレレ・・・私としたことがお下品な・・・)は、

「飛行機ってのはなぁ~、飛ぶように作られてんだぁ~! 余計なことするから暴れんだよぉ~! 女性を扱うようにしなぁ~(^o^) だからパイロットは女性に優しいのよ!」

「・・・」

「ホレッ! 余計なことすんな!」

「・・・」

「回転数2300回転、速度95ノット、水平直線飛行・・・それだけだぁ~!」

「ハイ!」

と言って、速度計を見たら105ノットは出ている・・・そうかぁ~パワーを落とそうとして、回転数を下げますとたちまち機首が下がります。

こんどは慌てて操縦桿を上に上げますと機首が上がり、急に飛行機は上昇します。

100~200ft=30m~50mくらい、あっという間に上昇します。

ここでクソッタレ教官が、

「余計なことすんなぁ!って言っただろう・・・」

「・・・(じゃぁ~どうすりゃいいの?)」

「だから、初心者はダメなんだ!」

「・・・(だから教わりに来てんだぁ!)」

「ほれっ!いいか、見ていろよぉ!」

「ハイ!」

「どうだ・・・このようにすんだよ!」

「・・・(そんなのわからんよ! ちゃんと一つ一つ教えろよ!)」

 

ビジネス・リーダーのみなさん!

最初は難しい飛行機の理論を述べていましたが、最後のクソッタレ教官との会話を熟読下さい!

初心者は誰も・・・ワカランのです!

だから企業・組織で新入社員を短期に育成しようとするなら、こんな職人的教え方では何十年掛かっても人は大量に育てることができないのです!

もちろん、特殊な技能だけは例外です。

基本的技能は、マニュアルを作り、そのマニュアルにそって、正しい理屈(理論)を教え、ポイントとなる「コツどころ」を「熟練した教え上手」のインストラクターが、手取り、足取り、教えるべきなのです。

その余裕が企業にあるかないかで、人材育成スピードはまったく違ってきます。

 

今回の『重心の位置と安定性』では、マニュアルと座学と実学が三位一体であるべきことを述べたくて書きました。

 

ここでやはり、山本五十六元帥の言葉が人育ての至言であることを確認したいですね!

 やってみせ、言って聞かせて、させてみせ、

 ほめてやらねば、人は動かじ。

 

あるいは、

 

 やって見せて、言って聞かせて、やらせて見て、

 ほめてやらねば、人は動かず。

 

実は、ここまでをよくご存じの方は多いですが、続きがあるのです!

 

 話し合い、耳を傾け、承認し、任せてやらねば、人は育たず。

 やっている、姿を感謝で見守って、信頼せねば、人は実らず。

 

 

ありがとうございました。

 

いわき経営コンサルタント事務所の詳細は、

https://imcfujimoto.net/

 

いわき市において、いわき夢実現塾を開催しております。

興味のある方は塾生になるにはハードルが高いですが、こちらをご覧下さい!

https://imcfujimoto.net/free/school

 

2024 / 06 / 17  08:30

飛行機の世界から学ぶ経営いろは考:第12講;『揚力』

飛行機の世界から学ぶ経営いろは考:第11講;『揚力』

第12講;『揚力』

 

飛行機には、飛行しているとき(飛行時)に4つの力が働いています。

 

皆さん、あのジャンボ・ジェットが・・・、大型飛行機が空を飛んでいるって不思議ではありま

せんか?

子供の頃、飛ばした紙飛行機やゴム動力の竹籤でできた飛行機もまったく同じ理屈で飛行してお

ります。

 

飛行機が空中を航行(飛行)するのには、空気抵抗に逆らってエンジンから生み出される力で

機体を前進させ、また、主翼の上の面と下の面に発生する空気の圧力差によって、主翼に上向き

の力を発生させ機体を浮き上がらせ(浮揚)なければなりません!

 

この上向きの力が飛行機の総ての重さ(重力)に打ち勝って、これに前進する力が加わって初め

て飛行機は飛行が可能なのですね(^o^)

 

飛行機を前進させるためにエンジンから生じる前向きの力を推力(Thrust)といいます。

空気の抵抗やその他諸々の抵抗が前に行こうとする飛行機には発生します。

これを抗力(Drag)といいます。

とにかく抗力よりも推力の方が勝たねば飛行機は前には進みません。

 

実は飛行機が前進しますと主翼(前にある大きな翼)に上向きの力が発生します。

これを揚力(Lift)といいます。

飛行機の総ての重さは地球の中心に引っ張られる力(引力)が働きますが、これを重力(Gravity

:Weight)と言います。

 

飛行機の機体には、常にこの推力、抗力、揚力、重力の4つの力が作用しています。

飛行機が水平(上下動なし)にまっすぐ(直線)飛んでおり、スピードを加速・減速もしない

状態のことを「水平直線飛行」といいます。

この状態の時には、物理学的に揚力=重力、推力=抗力の状態になっています。

 

飛行訓練の初期の段階では、この状態を維持し続けることを教官から教わります。

私の初めて出会ったクソッタレ教官(アレレ・・・私としたことがこんなお下品な言葉を(^^; 

は、「前を見ろ! ケツで感じろ!」でした。

「前を見ているのですが・・・?」

「曲がってんじゃぁねぇか!」

「???」

「ほら! ディレクション・ジャイロを見ろ! 方角だよ!」

「・・・」

「なにやってんだぁ! いま90°の方向に飛べって言ったろ! 100°の方角じゃぁねぇか!」

「あっ、ハイ(^^;」

「ほら、飛行機が落ちてきてんじゃぁねぇか!」

「はぁ~??? (^^; 」

「高度計を見ろ!」

「ハァ~???」

「これだよ!」

「あっ、ハイ! 1300ftです」

「バッキャァロー! 2000ftで飛んでたんだよぉ~!」

「・・・(^^; 」

 

まぁ~、とにかく最初に出会った教官、先生によって人生が変わるとは良くいったものです(^^;

私は一応、ULP(超軽量飛行機)の免許を持って、飛行操縦士免許の訓練に入りましたので、

本当は分かっているのですが、「知ったかぶり」するとますます増長してイジメをしそうな教官

でしたからできぬフリ、知らぬフリをしました。

 

ウルトラ・ライト・プレーン(ULP)というのは、おそらく、みなさんも見たことがあると

思います。

カヌーに羽根をつけて、それにプロペラをつけたような、それでも本物の飛行機です。

ハンググライダーやパラグライダーはよくご存知だと思います。

パラグライダーやハンググライダーをやっている人は意外と多いのです。

残念ながら、まだULPはマイナーなのですが、年々、やる人が増えております。

毎年、免許取得試験が難しくなり、取るのにお金もかかるようになってきているそうです。

私は、簡単で費用も掛からない時代、いい時に取ったと思っております。

 

この教官、1万5千時間の飛行時間が自慢でした。

とにかく、自分以外のパイロットは糞味噌に言う人でした(^^;

エアーラインのパイロットに対しても、「あんなもの金さえあれば、誰でもなれる!」なんでぬ

かしやがる。(アレレ、またまた・・・私としたことがこんなお下品な言葉を(^^;)

結局は、GUAMのアビエーション・スクール(飛行学校)に入って、こんなに飛行機は楽しい

のかを再度、感じることができました。

飛行機は「コツどころ」をマスターすれば、そんなに操縦は難しくありません!

米国の教官は、1年に何人訓練生を合格させたかが問われます。

日本では、プライドの塊(彼だけでしょうが・・・)で、落っことすことだけ、できない所ばか

り指摘してやる気をなくし、それでも這え上がってきた者を一人前とする・・・(^^;

 

結局、飛行時間が米国の数倍は費消し、かつ日本の1時間当たりの訓練費用は米国の約3倍です

から・・・日本で免許を取ったら、やっぱりそれは・・・凄いのです(^^;

 

さて『揚力』というのは飛行機が上昇するのに必要な上に押上げる力のことなのです。

物理の用語なのです。

 

高所恐怖症の人、遊園地のジェットコースター程度が怖い人は、もちろん、ULPやグライダー

には乗れません。

高所恐怖症を治す方法があるのですがここでは割愛します。

 

私は、仕事がら毎月飛行機(ジェット)に何度も乗っております。

ULPに較べたら馬力もあり、大きいですから空高く、ものすごいスピードで飛びます。

たまに飛行機のすれ違いを窓から見ることがあります。ものすごい早さでアッというまに向こう

から来た飛行機が見えなくなります。

 

空ではほとんど抵抗がありません。

スキーだって抵抗が少ないからチョットの傾きでスピードをつけて滑ることができます。

空の上も飛行機は滑って飛んでいます。だから、滑空といいます。

 

「なんとかと、なんとかは高いところが好き~(^o^)」といわれますが、軽飛行機で高いところ

に昇りますと、その下界の景色の素晴らしさの虜になります。

山の上よりも見晴らしがいいのです! ズッーと向こうの方まで見えます(^o^)

色まで違います! 

余裕ができますと、真下に人や自動車を見ることができます。まるで鳥なった気分になります。

 

飛行機から地上を見ていますと・・・、どこにも土地の境界線を見ることができません!

どこからどこがオラの土地なんて書いてありません!

なんで地上では、土地のことで隣同士がケンカをするのですかね?

その大げんか、国同士の喧嘩が戦争なのですね~(^^;

 

しかし、このようなことも空の上に行かない限り経験はできません。

そのために上に昇る力が必要になります。

 

飛行機では先程も言いましたように『揚力』が必要になります。

『揚力』は自分で下からあおいでもダメなのです!

 

冒頭で少し触れましたが、飛行機のプロペラをエンジンで回しましますと「推力」という力を

発生させます。

その力が飛行機を前に進めます。

そうしますとオートバイや自転車でスピードを出すのと同じく前から風がきます。

この風がやや上向きの主翼にぶつかります。

そうしますと、この風(実は空気なのです!)は翼にぶつかって、上側と下側に折れ曲がります。

上の翼面は、緩いカーブを描いています。

下の翼面は、ほぼまっすぐ平面です。

空気が上と下に分かれても、必ず、主翼の末端では再度合流します。

上の面を流れる空気の移動距離と下を流れる距離とはどちらが長いかといいますと上の面なのです。

一度分かれた空気が、また同じ時間に合流するためには、上面を流れていった空気の速度は、

仮面の速度よりも速くなくてはなりません!

 

ご承知のように、細い管を流れる水は太い管を流れる水よりスピードが速いのです。

少し物理をやった方なら思い出されると思います。

「管の中を流れる液体の流れる速さと圧力の合計は、管の断面積によらず常に一定である」

例えば、ストローのような管の中に液体を通すとしましょう。

その一部がくびれて細くなっているとしましょう!

くびれていない部分では、ストローの中を流れる液体は、遅く流れていますが、圧力は高いのです。

くびれている部分では、液体は速く流れていますが圧力は低いのです。

ストローが太くても細くても、流れる液体の「速さ+圧力」の値が常に一定になるのです!

 「遅ければ圧力が高い!」

 「速ければ圧力は低い!」

これを「ベルヌーイの定理」といいました。

もう少し偉そうに、難しく式を書きますと

 【流体の圧力と速度の関係式】

  静圧 + 動圧 = 全圧

 

この「ベルヌーイの定理」も基本的には、「ニュートン第2法則:運動方程式」に基づいています。

 

また、飛行機の主翼は横から見ますとやや上向きになっています。

皆さんが、自動車に乗っていて窓から手のひらを外に出し、向かってくる風に対して手のひらの

角度を変えますと手が持ち上げられたり、下に落とされたりしますね!?

飛行機のもう一つの『揚力』原理はこれなのです!

先ほどと同様に、前に進む飛行機に向かって主翼がやや上向きになっていますと、下に行こうと

する風が、翼下面にぶつかり、翼全体を足蹴りするように上に持ち上げます。

これも『揚力』成分なのです。

これは「ニュートンの第3法則:作用反作用の法則」なのです。

 

私は物理の専門家ではないので、これ以上ご託を並べますとボロが出ますので・・・これくらい

にします(^^;

チョット難しかったかな~!?

 

すなわち、『揚力』というは、前からまともに風がこないと発生しないのです!

 

なんと実は、飛行機は風に向かって飛び立つ(離陸)のです。

また着陸するときも、風に向かって降りるのです。

 

「インディアンと藤本、ウソつかない!」

ですから今度、すべての鳥が風向きに対して真正面になってから着地することをよく観察してみ

て下さい!

 

飛行機の着陸をするときは、管制官や飛行場のフライトサービスというところに問い合わせて、

必ず風向きと着陸して良い滑走路の方角を教えてもらいます。

どの滑走路も基本的に離発着するときには、風向きに相対します。

ところが誰も居ない、もしくは不時着すべき事態になったらパイロットはどうするか?といいま

すと、鳥の着地場面を観ることができたら鳥の頭の向いている方から風が吹いていることが分る

のです。もちろん、煙突の煙の方向、川や湖の波の方向を観ても判断します。

これは訓練生の時に、「エマージェンシー訓練」というのがあり、教官が急にエンジンを止めて、

緊急着陸せよ! と命じるのです。

その時、第1番目にすることは飛行機の速度を一定にし安定飛行状態を取ります。

続いて、どこに緊急着陸するのか教官や実技試験官に宣言します。

その時、風向きはこうだから、どのような方向から着陸するのかを瞬時に言わなければなりません!

パイロットはですから、いつも飛行中に万が一が起こったらどこに緊急着陸するのかを決めなが

ら飛ばなければなりません。

海の上を飛んでいますと、なるべく漁船並の船を見つけながら飛びます。

間違っても、貨物船やタンカーはダメです。

不時着したとき、すぐに助けてもらえるのは・・・船員さんが飛び込めるくらいの船なのです(^o^)

 

さて、前からの風が『揚力』を生むのですねぇ~。

この『揚力』によって、ドシンと下に落っこちなくて済むのです!

 

人生も経営も同じなのです!

いつも、前からの風が吹いている中を真正面から逃げないで立ち向かってゆくと上に上がること

が出来るのです!

 

人生や経営では、前からの厳しい風を普通「逆風」と表現します。

この言葉は困難な状況のときに使うようです。

 

でも「逆風」に立ち向かったほとんどの人が「栄光」を手にしております。

「栄光」こそ高い地位とすばらしい人生ではないでしょうか!?

「栄光」を手にすることのできた人は、実に多くのすばらしい体験をします!

 

ビジネス・リーダーであるあなたに、そんな「向かい風」を送ってくれる環境、人こそ、自分を

成長させてくれる『巡り会うべき場』『巡り合うべき師』『先輩』『良き同僚』『お得意先様』『お

客様』であることをシッカリ理解して欲しいのです!

 

ありがとうございました。

 

いわき経営コンサルタント事務所の詳細は、

https://imcfujimoto.net/

 

いわき市において、いわき夢実現塾を開催しております。

興味のある方は塾生になるにはハードルが高いですが、こちらをご覧下さい!

https://imcfujimoto.net/free/school

 

2024 / 06 / 10  08:30

新ビジネス・リーダーいろは講:第11講;『航空燃料について』

新ビジネス・リーダーいろは講:第11講;『航空燃料について』

『航空燃料について』

飛行機は、航空燃料が不可欠です。

ピストンエンジンを搭載するプロペラ機が使用するガソリン燃料とジェットエンジンを搭載する

ジェット機が使用するジェット燃料の二つに分けられます。

 

航空機のガソリン燃料は80~145オクタン(難しいことを書いてスンマソン!;オクタン 

(octane) は炭素を8個持つ飽和炭化水素の呼称です)まで使用されています。

色で見分けます。

AVGAS(Aviation Gasoline)と私たちは呼んでいます。

AVGASの代表的なものに100LLなるものがあります。これは透明の青色をしております。

100というのはオクタンの混合比率のことです。LLと付いているのは、Low Leadのことで、

混入されている4エチル鉛の量が少ないことです。

オクタン価という言葉を聞かれたことがありますよね!?

ガソリンのエンジン内での自己着火のしにくさって言うとチト変ですが、ノッキングの起こりに

くさ(耐ノック性・アンチノック性)を示す数値なんです!

オクタン価が高いほど、ノッキングが起こりにくいのです。

 

今では自動車の仕業点検ってしませんでしょう!?

飛行機はそうはいきません! 特に私の乗るセスナ:スカイフォーク172Pなるモノは、キャブ

レターが付いています。上等な飛行機はオート・キャブです。

今の自動車は全部オート・キャブでオート・ミクスチャー(自動燃料混合装置)です。

ですから、飛行機に乗る前の仕業点検の最重要項目にガソリンの量と質(中に入っているガソリン

種類)を目視することは非常に重要です。

 

空の上で、「あれれ・・・ノッキングしちゃったぁ~(^^; あれっ、エンジンが止まっちゃたぁ~(^^; あれれ・・・飛行機が急降下を始めた~(^^;」は洒落になりません(^^;

 

ところで参考ですが自動車の場合、プレミアム・ガソリンのオクタン価は98~100,レギュラ

ーが90~91です。

ですから実は、航空業界の人から余計な事は言うな!ってお叱りを受けるかも知れませんが、航空

機燃料は4エチル鉛を多く大気に放出しているのです。

 

私の乗る飛行機の燃料は、リットルではなくギャロン(ガロン;Gl)で表します。

1ガロンは、3.785リットルです。約6.6ポンドの重さがあります。

これまた飛行機では重さをポンド(lbs)で表します。1ポンドは、453.6gなんですねぇ~(^^; 

めんどくさいですが・・・パイロットになるためには万国共通用語を憶えなければなりません(^^; 

 

ところでジェット燃料は、JET-A、JET-A1、JET-5などのケロシン系とJP-4の

ワイドカットがあります。

ケロシンというのは、原油を蒸留するときに出てくる石油の成分で、ガソリンについで多く抽出さ

れます。だいたい・・・灯油とほとんど変わりません!

民間ジェット機は、このケロシン系を使います。

ワイドカットというのは、原油を蒸留時にガソリンの沸騰点範囲(25~100℃)で流出しちゃ

うナフサと灯油を混合した燃料です。主に軍用ジェット機が使います。

 

そんで・・・実は、ジェット燃料というのは温度によって容積が変化してしまうのです。燃料は

飛行機の翼にタンクがあります。冷暖房などしておりませんから温度変化はすごいのです! 

ですから、容量をガロンなどで表現するより重量ポンドで表現します。

 

んでぇ~、ビジネス・リーダー必須のコスト計算をしましょう!

航空燃料の価格は、原油の需要と産油国の生産量によって変化します。

ケロシン1ガロン当たりの価格によって、航空会社の燃料費は違ってきます。

B747-400というバブリーな時代には大受けだった大型ジャンボジェット機はどれくらいの

コストが掛かるのかという計算をしてみましょう!

B747-400の燃費は、たった1秒に3.6リットル(約1ガロン)使うのです!

ということは、1時間飛ぶのに約12,960リットル消費します。

 

ケロシン価格の直近の2ヶ月平均に基づいて、燃料サーチャージの価格は変動します。

このところ為替平均が155円~160円の間ですね!・

5月6日の数値が、ケロシン1ガロン:$7.1でしたので1,122円/G(158円計算)です。

よって、1リットル312円となりますから、B747-400が1時間飛ぶと404万4千円掛

かるのです(^^;

成田からロサンジェルスまで約11時間かかるとしますとします。この時間は、地上滑走、上昇中

のフルパワー時(通常の1.5倍とします)、巡航高度での飛行時間、万が一の時の代替飛行場へ

の最低必要燃料込みです。

ですから、1就航あたり4,448万円、約4,500万円かかるのです!

毎日1回定期運航しましと年間164億3千万円の燃料が空に舞っているのです(^^;

 

為替相場によって、ジェット燃料の価格が変動しますから・・・、乗客にはそのプラスになった

差額を燃油サーチャージという名目で徴収するのですね!

マイナス差額で儲かっているときは、・・・?(^^;

 

ちなみに最新型ジェット機B787は、B747-400の2.6倍と高性能です!

ですから、燃料費は成田からロサンジェルスまで飛行時間も1時間分短縮されるとして約1,73

0万円くらいなわけです!

ANAの国際線座席数は、B747-400が平均450席、B787-8が240席ですから

1人当たりの燃料費比較をしますとB757-400が約10万円、B787-8が約3万8千円

です。

スピードと快適性は、断然B787の方が上ですよね!?(^o^)

 

いずれ・・・飛行機もハイブリッド、水素燃料飛行機と大進歩して行くに違いありません。

もちろん、そこには石油マフィアの妨害などもあってそう簡単ではないでしょうが・・・?

 

ビジネス・リーダーの皆さん、御社の使っている機械、自動車の燃費や車両コストはどれくらいで

しょうか?

ここに問題を出します。管理者研修の基礎計数で出す問題です。解答はしません!

ご自身でしっかりお考え下さい!

 

【設問】

自家用貨物自動車1台当たりの運行費はつぎのとおりである。

 1.ガソリン1L当たり140円、1Lで10Km走る。

  2.オイル1,500Kmごとに交換し、総額4,200円である。

  3.購入価格は360万円、1年後2/3の価格で下取り転売する。

  4.損害保険料は強制、任意とも特割りで年間114,000円支払う。

  5.修繕費は1ケ月5,000円を計上している。

  6.人件費1台当たり、運転手(年)380万円、助手(年)200万円、

   毎日、運行するものとし、運転手・助手は交替制である。

 

 さて、年間170,000Km走るとして、1Km当たりのコストはいくらか?

 ヒント:1年間にかかる固定費と1km当たりかかる変動に分け考えるとよい!

          ちなみに公式は、

 1km当たりコスト = (年間総固定費÷年間走行距離)+1km当たり変動費

 

ありがとうございました。

 

いわき経営コンサルタント事務所の詳細は、

https://imcfujimoto.net/

 

いわき市において、いわき夢実現塾を開催しております。

興味のある方は塾生になるにはハードルが高いですが、こちらをご覧下さい!

https://imcfujimoto.net/free/school

 

1 2 3 4 5 6 7 8 9 10 ...
2025.04.03 Thursday